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Abstract 

The line profiles from a sample containing small 
spherical particles, non-uniform strain and instru- 
mental broadening can be described exactly by using 
error functions with complex arguments. Con- 
sequently, the development by Houska & Smith [J. 
Appl. Phys. (1981). 52, 748-754] has been revised in 
terms of these functions. This calculation has been 
extended, by the use of error functions with complex 
arguments, to include a more general distribution of 
particle size or column heights than that obtained 
from a single sphere. The latter extension is applied 
to profiles obtained from a partially stabilized zir- 
conia wear debris. It is found, in this example, that 
a column-height variation coefficient that is greater 
than that from a single sphere gives a somewhat better 
fit of the experimental line profiles. We find that if 
the single-sphere model is used to fit the profiles the 
particle size and root-mean-square strain differ by 
about 12 and 5% respectively. 

Introduction 

Warren & Averbach (1950, 1952) developed an X-ray 
diffraction line-shape analysis that is applied to reflec- 
tions from two or more orders of the same (hkl) 
planes to yield particle size and nonuniform strain 
information. Adler & Houska (1979) have simplified 
the Warren-Averbach treatment to analyse for two 
components of intrinsic strain present in thin films 
as well as the particle size. They demonstrated that 
the Fourier coefficients in the Warren-Averbach line- 
shape analysis can be interrelated with five 
parameters for two orders, which include two strain 
parameters, the average particle size and two instru- 
mental parameters. The instrumental parameters are 
obtained separately by fitting data obtained from 
ideal samples to an analytical function that describes 
instrumental broadening. Analytical functions 
developed by Houska & Smith (1981) greatly reduced 
the computer time. An advantage of the latter 
approach is that useful results may be obtained even 
though entire profiles are not available. It is well 
known that the classical Warren-Averbach analysis 
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(Warren, 1969) g~ves a hook effect, which may intro- 
duce considerable error in the final results if for one 
reason or another the full background is not obtained. 
This difficulty is eliminated through the use of analyti- 
cal functions that are capable of describing the com- 
plete profile. 

The authors have recently discovered that the 
development by Houska & Smith (1981) could have 
been carried out exactly with integrals leading to error 
functions with complex arrangements. This, com- 
bined with the new computer routine MERRCZ 
(IMSL, 1982), allows these complex functions to be 
generated with a high degree of precision. These two 
developments have inspired the first part of the pres- 
ent paper as well as an extension of the theory that 
allows the single-size-sphere model to be extended 
to include a variation in sphere size. To complete the 
calculations, both must be related to the column- 
length distribution found in the more conventional 
line-shape theory, which is described in the preceding 
paper. 

Theory 

It has been shown that the profile shape from sput- 
tered films or cold-worked materials is described by 
the integral (Houska & Smith, 1981) 

3i2 P(h~)/2N3Yo= [1-u+(4 /27)u  3] 
o 

x exp - (yu + ~u 2) cos 2"rrh~u du 
(1) 

with the various terms given by 
2 2 

'y = 2rrN3(a v + 7l '(61O)f.)  , 

/3 2 2 = 7rN3(at3 + 27r(e2u)12), 

where N~ is the average number of cells in a statisti- 
elD) and (elZt,) are strain cally spherical grain, ( : 

parameters with an nth neighbor dependence given 
2 o by (e~) = (e2o)/n + (el u). h3 is a scaled reciprocal- 

lattice variable in units of N3/do with do= spacing 
for first-order 001 reflection. The parameters av and 
a0 describe the shape of the instrumental broadening 
for each 001 reflection and, lastly, Yo provides scaling 
along the intensity axis. Equation (1) is applicable to 
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symmetrical peaks. Highly symmetrical peaks can be 
obtained by use of a high-resolution diffractometer 
with a quartz monochromator, which eliminates the 
Ko~ 2 component of the Ka doublet. In deriving (1), 
it was assumed that the distribution of column lengths 
in the subgrains can be represented by the distribution 
of column lengths in a sphere of the correct average 
diameter. The convolution of two strain distributions 
is used to describe the state of nonuniform microstrain 
in the sample. One is due to the strain distribution 
caused by dislocations and is represented by the term 
(e2D). The other distribution is related to long-range 
fluctuations, which cause variations in the uniform 
column strain from one subgrain to another, and is 
represented by the term (e 2 u). The instrumental func- 
tion is obtained by setting the particle-size term 

[ 1 - u + a u 3 ]  = 1 

and 

<~,:~>=<~u>= 0. 

The major steps required to obtain the exact func- 
tion are outlined by the equations that follow. 
Equation (1) is written as three integrals according to 

P(h~)/2N3Yo 

3t 2 = exp - (Tu+f lu  2) cos 2~h~u du 
o 

- (1 /2z r )  d /dh~[3!  2 e x p -  (7u +/3u 2) 

x sin 2"n'h~u d u [  

x sin 2"rrh~u d u ] .  (2) 

The first integral can be related to standard forms 
given by Grobner & Hofreiter (1975, p. 109) if x = 
/3~/2u+7/2/3'/2. With some algebraic and trigo- 
nometric manipulation, one arrives at terms involving 
standard integrals containing error functions with 
complex arguments, i.e. 

exp(--x  2) cos 2 q'rh~x/ fl  1/2 dx 

= [7r'/2/exp (,rr2h~21fl)] 

× [eft ( x -  i'rrh~l/31/2) + erf (x + i'rrh~l/31/2)] 

and 

exp ( - x  2) sin2,trh~x//31/2 dx 
= [ -  i,rr'12/exp (qrEh~2//3)] 

x [erf ( x -  iTrh~//31/2)-erf (x + iTrh~//31/2)]. 

(3) 

Using these results and the error function comple- 
ment = 1 - erf z, we obtain 

3t2 exp [ -  ( 7 u +  flu2)] cos 2zrh~u du 
0 

=('n"/2/2fl '/2) exp ( -  7r2h~2//3) exp (72/4/3) 

x {Re [exp ( - izrh~ T~/3) 

x erfc ( 7/2/3 ,/2 _ i'n'h ~1 fl ,/2) ] 

- Re [exp ( - i,a'h~ 7//31/2) erfc (7/2fl  1/2 
+3/31/2 i,a.h~//3il2)]}, (4) 

which makes use of the real part of the term in the 
brackets. 

For computational purposes, it is best to make use 
of a modified function related to the error function 
of a complex argument (see Abramowitz & Stegun, 
1967, p. 297). This is given by 

w(z) = exp ( - z  2) erfc (-iz).  (5) 

With this substitution, the first term of (2) is given by 

3t2 
exp (TU'+ /3U 2) COS 27thOu du 

o 

= (~r'/2/2/3'/2)(Re w(~rh~//3 '/2 + iT/2/3 '/2) 

- e x p  [_9/3 _37] 

x {cos 37rh~ 

x Re w['trh~//3 '/2 + i(3/31/2 + 7/2/31/2)] 

- s i n  3~rh~ 

x l m  w[~-h~//3'12+i(3/31/2+7/2/3'/2)]}). (6) 

Similarly, one finds for the second integral of (2) 

aTah~ 3t2 e x p - (  Tu + /3u 2) sin 2,rrh~u du 
o 

=a/Oh~((,tril2/2/3Xl2)[Im w(qrh~//3 '12 + i7/2/3 '12) 

- e x p  [ -  (9)/3-37] 

x {cos 3~h~ x Im w[Trh~//31/2 

+ i(3fl '/2 + 712/3'/2)] 
+sin  3~rh~ x Re w[~rh~/fl ~/2 

+ i(3fl 1/2 + 712fl ,/2) ]3}). (7) 

The following relations are used in simplifying the 
derivatives of these complex functions: 

w(iz") = exp (#,2) erfc z"; 

with 

I 712~ '/2- i~h~l# '/~ 

z"= l~./2 + ~12,./2_ i=h~l ,./~ 
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O/Oh~ Im w(z) 

= 7r//3-1/2[-ZTrh~/fl-l/2 Im w(z) 

(y/2/3 u2) 

- 2 x  or 
(~/2/3 '/2 +3/3'/2 

x Re w, z) ÷27r-1/2]; 

O/Oh~ Re wl z) 

= 7r/3-1/2[ -2"rrh~//3 -1/2 Re w(z) 

f(~/2/31/~) 
or + 2 x ~.)( 

"y/2/31/2 ÷3/31/2) 

x Im w(z)]. 

These relations lead one to the result 

2 

- (1/27r) O/Oh~ e x p -  (yu +/3u 2) sin 2~rh~u du 
o 

=(TrUZ/2/3uz)(fl-1/R(y/2~ 1/2) Re w(z) 

+/3-uz(.a'h~/fl-l/2 Im w( z) - /3-1/27r-l/2 

- e x p  [ - 9 / 3 - 3 y 1  

x {[ _3 cos 3rrh~ +/3-1/2( r rh~  -1/2) sin 37rh~ 

+ f l -U2(y/2f lu2+3flu2)  cos 3rrh~] Re w(z') 

+ (3 sin 3rrh~ +/3-W2(rrh~/3-'/2) cos 3rrh~ 

-fl-*/2(y/2/31/2+3/3u2) sin 3rrh~) Im w(z') 

-/3-U2rr-U2 cos 3rrh~}), 

where 

(8) 

z = rrh~//3-x/2+ iy/2/3u2; 

z '=rrh~fl-u2+i(y/2/31/2+3fll /2).  (8') 

The evaluation of the third integral in (2) leads to 
a lengthier expression, which will not be given here 
since the general approach is illustrated in taking the 
first derivative. The final equation can be written in 
the following simple form: 

P'(h~)/2NaYo 

3t2 
= [ 1 - u + ~ u 3 ] e x p - ( y u + / 3 u 2 )  cos2rrh~udu 

o 
(9) 

= (rrUZ/2fll/2){[Al(/3, x, y) Re w(z)+ A2(fl, x, y) 

x Im w(z) + A3(~8, x, y)rr -1/2] - FLC}, 

where 

X = 7rh~/3 -1/2, y = Yl2/31/2; 

y '= y/2/3 1/2 +3/3 ~/2; 

and 

Al(fl, x, y ) =  1 _ yfl-u2[ _ 1 +(4/27/3)(3+ y2_ 3x2)]; 

A2(fl, x, y) = -x f l -1/2[-1 + (4/27/3)(3- x 2 + 3y2)]; 

33(/3, x, y) =/3-1/2[_ 1 + ( 4/27/3 )( 1 - x 2 + y2) ]; 

Bl(fl, x, y') = ( 1/3fl )( 1 - 2x 2 + 2 /2)  

- (4y'/27/33/2)( 3 + / 2  _ 3x2); 

B2(/3, x, y') = (4/3/3)xy'-(4x/27f13/2)( 3 -  x 2 + 3y'2); 

Ba(fl, x, y') = - (2 /3 /3)y '  + (4/27/33/2)(1 - x 2 + /2 ) ;  

B4(/3, x, y') = - (2 /3 /3)x  + (8/27fla/2)xy'. 

FLC (finite limit correction) 

=exp  [ - 9 / 3 - 3 y ] { ( R e  w(z') cos 37rh~ 

- Im w(z') sin 37rh~)Bl(fl, x, y') 

+ [Re w(z') sin 37rh~ + Im w(z') cos 37rh~] 

x Bz(fl, x, y') + 7r -u2 cos 3 7rh~B3(/3, x, y') 

+ 7r -1/2 sin 37rh~B4(/3, x, y')}. 

Equation (9) is symmetric with respect to the vari- 
able h~. This can be verified by noting that AB A3, 
B~, B3 are even functions of h~, A2, BE, B4 are odd 
functions of h~ and that 

w(-z)=w(z), 

i.e. 

and 

Re w ( - z ) =  Re w(z) 

Im w( -z )  = - I m  w(z). 

The instrumental broadening function may be 
obtained by taking the limit of large particle size and 
zero strain leaving only a ,  and at3 to determine the 
line broadening. This also represents a convolution 
between Cauchy and Gaussian profiles 

gi(h3)= YoRe w(Trh3/a~+ia~/a~). (10) 

In this case, h a is the usual variable in reciprocal 
space. Equation (10) was obtained by Langford 
(1978) with an approximate treatment of particle-size 
broadening. However, applying (10) for a full strain- 
particle-size analysis instead of (9) is risky, because 
it is based upon an unrealistic particle-size distri- 
bution. 

In the previous paper, it was found that both the 
average column height, N3, and the variation 
coefficient of the column-height distribution, V~, can 
be incorporated into the expression for the particle- 
size profile. The variation coefficient of the column- 
height distribution may not always be equal to the 
variation coefficient of the spherical distribution, 
0.354. In order to remove this restriction, two overlap- 
ping models were suggested, model I treats the range 
0 -  Vc-<0.57 while model II treats the range 0.36_< 
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V c -  0.70. For model  I, the profile shape with strain 
and instrumental broadening is described by two 
integrals based upon a rectangular distribution of 
columns 

1--31/2V c 

P(h~)/EN3Yo = ~ ( 1 - u )  e x p - ( y u + 1 3  u2) 
0 

x cos 2,rrh~u du + (1/4 x 31/2 Vc) 

1+31/2Vc 
X I [(1+31/2Vc) 2 

1--31/2Vc 

- 2 u ( 1  + 31/2 V¢) + u 2] 

x exp - (yu + 13u 2) x cos 2.a'h~u du, 
(11) 

where V~ is the variation coefficient for columns. The 
integrals in (11) are of a form already considered and 
one obtains 

P(h~) /2NaYo 

=(.a.112/2131/2){(1 +y13-1/2) Re w(z)  

+ x13 -1/2 Im w(z)  

- -  13--1/27/'--1/2 - -  F L C ' -  FLC"}, (12) 

where 
x = "n'h~13-x/2; y = y/2131/2; 

y ' =  y/E131/E+(1-31/2Vc)131/2; 

y"= ( y/213 x/2 ) + (1 + 31/2V~)131/2; 

z = x + iy; z' = x + iy'; z" = x + iy" 
and 
F L C ' =  exp - /3  (1 - 31/2 V~)2 _ y(1 - 31/2 V~) 

x {[Re w(z')  cos 27rh~(1-31/Ev~) 

- I m  w(z')  sin 2"a'h~(1- 31/Ev~)] 

x [ - ( 1 / 8  x 31/2V~13 ) ( 1 -  2x2 + 2y'2)] 

+ [ R e  w(z')  sin 2.a'h~(1-31/Ev~) 

+ Im w(z')  cos 2"rrh~(1-31/Ev~)] 

x [ - (1/2 x 31/2 V~13 )xy '] 

+ ,rr-1/E(y'/4 x 31/2 V~13) 

x cos 2~rh~(1 - 31/2 Vc) + qr-1/2(x/4 x 31/2 V~13) 

× sin 27rh~(1 - 31/2 V~)}, 

FLC" = exp [ -13(1 + 31/2 V~) 2 -  y(1 + 31/2 V~)] 

x {[Re w(z") cos 27rh~(1 + 31/2Vc) 

- I m  w(z") sin 2~rh~(1 + 3~/2V~)] 

x [(8 x 31/2V~13)-1(1 - 2x 2 + 2y"2)] 

+ [ R e  w(z") sin 21rh~(1 + 31/2V¢) + Im w(z") 

x cos 2~rh~(1 + 31/2V~)][(2x3~/2Vc13)-1xy "] 

-zl.--1/2(y"/4 131/2V~13) cos 27rh~(1 + 31/2 V~) 

- .rr-1/2(x/4 x 31/2 V~13) sin 2~rh~(1 + 3 ~/2 V¢)}. 

Similarly, the integrals for model  II, with instrumental 
and strain broadening,  become 

P(h~) /2N3Yo 

"~(x-3yzv*) [1 u + a ( l _ a V 2 ) - l u 3 )  
0 

x exp - (yu + flu 2) cos 2.trh~u du 
~-(1+31/2 Vg) 

÷ ( 3 1 / 2  Vg)  -1  2~(1_~/2Vg ) [~(1 + 31/2  Vg)  2 

-½(1 + 31/2 Vg)u + l u 2 -  (2/27) (1 + 31/2 Vg)-1u 3] 

x exp - (yu + 13u 2) cos 2"n'h~u du, (13) 

where Vg is the variation coefficient for subgrain 
diameters. Equation (13) can also be evaluated and 
the final result is given by 

P(h~) /2N3 Yo =('rr1/2/211/2){Ai(13, x, y) Re w(z)  

+ A2(13, x, y) Im w(z)  

+ A3(13, x, y)~r -1 /2-  F L C ' -  FLC"}, 

where 

x = "trh~fl-1/2; y = y/2flx/2; 

y ,=  7/2131/2 +3(1 -- 3UEVg)fl 1/2, 

y,, = (.y/Efll/2) +3(1 + 31/2 Vg) fl l/2 ; 

z = x + iy; z' = x + iy'; z" = x + iy" 

and 

Al(fl ,  x, y) = l + yf1-1/2 
_ 4 ( 1  - 3 vE)-1yfl-3/2(3 + y2_  3x 2) 

2 --1~t3--3/2 AE(fl, x, y ) =  x f l -1 /2 -4 (1  - 3  Vg) .~p 

x (3_ x 2 + 3y2) 

2 --1 --3/2 - -  X 2 A3(fl, x , y ) = - f l - 1 / 2 + 4 ( 1 - a V g )  fl (1 +y2) 

Bl(fl, x, y ')  = -2(31/2  Vg)-l( l  - 31/2Vg)-1y ' 

x 133/2(3+ y,2_ 3x 2) 

B2(13, x, y') = -2(31/2  Vg)-1(1-  31/2 Vg) -1 

x x13-3/2( 3 -  x 2 + 3y '2) 

Ba(fl, x, y')  = 2(31/2 Vg)-l( 1 - 31/2 Vg )-1 

x/3-3/2(1 - x 2 + y,2) 

B4(13, x, y')  = 4(31/2 Vg )-1( 1 - 31/2 Vg )-113-3/2xy, 

C1(13, x, y") = 2 (  31/2 Vg)-1(1 + 31/2 Vg) -1 

x y,,13-3/2(3+ y,,2_ 3x 2) 

C2(13, x, y") =2(31/2 Vg)-l(1 + 31/2 Vg) -1 

x x13-3/2( 3 -  x 2 + 3y "2) 

C3(13, x, y") = -2(31/2  Vg)-I( 1 + 31/2 Vg) -1 

X 13-3/2(1 -- X 2 + y,,2) 
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C4(fl, x, y") = -4(31/2 Vg)-'(1 + 3~/2Vg)-~fl-3/2xy " 

FLC' = exp - [9/3 (1 - 3'/2 Vg)2 _ 33~ (1 - 31/2 Vg ) ] 

x {[Re w(z') cos 3~rh~(1- 3~/2 Vg) 

- Im w(z') sin 37rh~(1-31/2Vg)]B,(fl, x, y') 

+[Re  w(z') sin 3~-h~(1-3u2 Vg) 

+ I m  w(z') cos 37rh~(1-3~/2Vg)]B2(fl, x, y') 

+ rr-'/acos 3 rrh~(1 - 31/2 Vg)B3(fl, x, y') 

+ 7r -~/2 sin 3-n'h~(1 - 3'/2Vg)B4(fl, x, y')} 

FLC" = e x p -  [9fl (1 + 3~/2 Vg)2- 33,(1 + 3a/2 V~)] 

x {[Re w(z") cos 37rh~(1 + 3~/2 V~) 

- Im w(z") sin 3~rh~(1 + 3~/2Vg)]C,(fl, x, y") 

+[Re  w(z") sin 3~h~(l + 3~/2Vg) 

+ Im w(z") cos 37rh~(1 + 3'/2Vg)]C2(fl, x, y") 

+ "rr -1/2 cos 3rrh~(1 +3'/2Vg)C3(fl, x, y") 

+Tr -~/2 sin 37rh~(1 +3'/2G)C4(fl,  x,y")}. 
(14) 

The limit of (14) as Vg -~ 0 gives essentially the profile 
shape from a statistically spherical subgrain with non- 
uniform microstrains and is given by (9). Similarly, 
the limit of (12) as Vc ~ 0 gives the profile shape from 
a uniform column of height N3, with microstrains, i.e. 

where 

P(h~)/2N3Yo 

= "n:/2/2flU2(Re w(z)(1 + yfl-,/2) 

+ xfl -'/2 Im w ( z ) -  , w - 1 / 2 f 1 - 1 / 2  

- e x p  ( - f l -  y){[Re w(z') cos 27rh~ 

- Im w(z') sin 27rh~]y'f1-1/2 

+ [Im w(z') cos 27rh~ 

+ Re w(z') sin 2"rrh~]xf1-1/2 

-- "lT-1/2f1-1/2 COS 27rh~}), 

X = 7rh~fl-1/2; y = " y / 2 f l ' / 2 ;  

y' = "// 2 fl l/2.-F fl 1/2, 

z = x + i y ,  z '=x+iy ' .  

(15) 

For Vc > 0.707, even more complicated models must 
be used. 

In the development of (9), (12) and (14), bending 
strains have been neglected. Mathematically, it is very 
difficult to introduce the bending strain along with a 
distribution of column heights. But for a uniform 
column of height N3, the profile shape with bending 
strain has already been obtained (Rao & Houska, 
1986). 

R e s u l t s  a n d  d i s c u s s i o n  

Equation (9), which is based upon the column distri- 
bution from a sphere of constant diameter, gives 
essentially the same profiles as an earlier treatment 
by Houska & Smith (1981). The main difference is 
that the earlier treatment made use of a numerical 
convolution based upon a nine-point Gauss -x  
Legendre quadrature. Similarly, Houska & Smith 
(1981) used a 19-point Gauss-Legendre quadrature 
to obtain the instrumental broadening function 
instead of (10). The difference in accuracy between 
these two approaches is very small (<3%),  and well 
within present day experimental errors with both 
requiring about the same computer time. We believe 
that the present approach using the computer routine 
M E R R C Z  is more precise and that this accounts for 
the small differences. Both approaches are capable 
of providing well defined confidence levels for par- 
ticle size and strain determinations when combined 
with an appropriate statistical fitting routine. And 
both make use of the line profile rather than merely 
the half width and (or) integral breadth. With the 
availability of computer-controlled diffractometers 
and high-speed computers for data storage and data 
reduction it has become much more preferable to 
make full use of the available diffraction line profiles. 
Two orders, i.e. hkl and nh, nk, nl must be used if both 
particle size and strain broadening are present. 

The development of models I and I I represents a 
refinement of the single-size-sphere model. When the 

- -  

c ~  ° 

° 

/" 

l i I I I I I 
1.92 1.94 1_96 1.98 2,00 2.02 2.04 2.06 

h 3 

o.. 

0.92 
I I I I I I [ 

0.94 0 .96 0.98 1.00 i ,  02 1.04 1.06 
h 3 

Fig. 1. Least-squares fit of the line profiles from the 200 (top) and 
400 reflections of a partially stabilized zirconia sample using 
(14). Solid line-~ theoretical fit, +-~ experimental data. 
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profile data are sufficiently accurate and complete 
along the tail regions, this approach is preferred 
because additional information about the column- x 
height distribution is obtained. This, of course, is 
made possible by the introduction of the variation 
coefficient and is illustrated by the following experi- 
mental example. 

The line profiles from the 200 and 400 reflections 
were obtained from the wear debris of a partially 
stabilized zirconia sample. These profiles were used 
to determine the average column height, variation 
coefficient of the column-height distribution and the 
amount of microstrain present in the sample. The 
instrumental parameters, a~ and as, were determined 
by least-squares fitting the line shape of the 110 and 
211 reflections from an Mo powder standard to the 
Voigt function. A high-resolution diffractometer with 
a quartz monochromator was used to obtain the line 
shape experimentally. This effectively eliminated the 
Ka2 component of the Cu Ka doublet. A least-× 
squares fit using (14) for the line broadening of the 
200 and 400 reflections indicated that the average 
column length is 86/~, the variation coeflicient of the 
column-height distribution is 0.51 and the non-5< 
uniform r.m.s, strain component, (e2D) 1/2, which can 
be attributed to dislocations, is equal to 0.022 (see 
Fig. 1). The non-uniform strain component, (e2u) 1/2, 
was found to be insignificant or zero. The magnitude 
of the strain component, (e2o) 1/2, is surprisingly close 
to that found in cold-worked metals and metal films, 
indicating a high density of dislocations in partially 
stabilized zirconia wear debris. If it is assumed that 
the geometrical arrangement of dislocations is statisti- 
cally spherical, a variation coefficient of 0.51 indicates 
that the dislocations that define the subgrains are not 
uniform in size. A least-squares fit of the experimental 
line shape with the single-sphere model (9) showed 
significant misfit in the first-order reflection, which is 
most influenced by subgrain size. Therefore, we must 

conclude that a distribution of spherical subgrains is 
in best agreement with the data. Also, it must be 
further concluded that the more complete analysis 
using (12) and (14) provides a more accurate analysis 
of subgrain size and strain. It was found that the 
particle size obtained using the single-sphere model 
is 12% larger while (e2o) 1/2 is 5% larger than the 
results obtained using the more complete analysis 
that includes the variation coefficient. For some appli- 
cations these differences may not be important; 
however, information on subgrain-size distribution is 
lost. 
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Abstract 

A new.analytical function is proposed for absorption 
correction. It is expressed by surface harmonics with 
polar angles that specify the primary and secondary 
beam directions. This function has an advantage over 
Fourier expansion because it is rotationally invariant. 
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Two empirical, methods are used to determine the 
expansion coefficients. One uses the intensity devi- 
ations of equivalent reflections, and the other uses 
the calculated intensities at the stage of structure 
refinement. The utility of the analytical function is 
demonstrated with a model and with actual data. 
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